Mind the spikes: Benign overfitting of kernels and neural networks in fixed dimension

Moritz Haas^{*1}, David Holzmüller^{*2}, Ulrike von Luxburg¹, Ingo Steinwart²
 ¹ University of Tübingen and Tübingen Al Center, ² Faculty of Mathematics and Physics, Institute for Stochastics and Applications, University of Stuttgart.
 * denotes equal contribution.

Can interpolating models generalize well?

- Traditional view: For good generalization, do not overfit.
- Some neural networks trained to interpolation still generalize well. Why?

How to achieve benign overfitting in arbitrary dimension

```
In high dimension
(Bartlett et al. 2021):
```

```
"generalizes well"
"min-norm interpol. = smooth + spiky"
```

"interpolates noise in training data with low volume spikes"

- In high-dimensional limits, *benign overfitting* understood for linear and kernel models
- In fixed/low dimension, narrative so far: Overfitting kernels inconsistent

(Rakhlin and Zhai, 2019) (Buchholz, 2022)

We show: Benign overfitting is possible with kernels and neural networks in fixed dimension!

choose $\gamma \to 0$ fast enough, $\rho \to 0$ as for kernel ridge regression, then

min-norm interpol. of $k_{\rho,\gamma}$ achieves optimal convergence rate.

Neural networks: Add tiny fluctuations to activation function!

Simon et al (2022): "Every dot-product kernel on $\mathbb{S}^d \ \forall d \in \mathbb{N}$ is the NNGP kernel/NTK of a 2-layer network with an appropriate activation function."

Kernel regression	Neural network regression	Training process of neural networks	$ \begin{array}{c} 0.4 \\ 0.2 \\ 0.0 \\ -0.2 \end{array} $ $ \begin{array}{c} 0.4 \\ 0.0 \\ -0.2 \end{array} $ $ \begin{array}{c} 0.1 \\ 0.0 \\ 0.1 \\ 0.$		$\begin{array}{c c} & \gamma = 0.2 \\ & \gamma = 0.07 \\ & \gamma = 0.07 \\ & \gamma = 0.04 \\ & \gamma = 0.02 \end{array}$
Generalized inconsistency results Not only over bounded, open ReLU NTK RKHS equivalent to $H^{\frac{d+1}{2}}(\mathbb{S}^d)$.		$-0.4 - \frac{\gamma = 0.05}{-2} - \frac{1}{0} - \frac{1}{1} - \frac{1}{2} -$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	3 0.02 0 25 50 75 100 125 150 175 Index Add high-freq. components in Hermite series	
subsets of \mathbb{R}^d but also over \mathbb{S}^d (Chen and Xu, 2021) (Bietti and Bach, 2021) $Var(y \mid x) \ge \sigma^2$ for all x			$\omega_{\text{NNGP}}(x;\gamma) := \sqrt{2} \cdot \sin\left(\sqrt{2/\gamma} \cdot x + \pi/4\right) = \sin\left(\sqrt{2/\gamma} \cdot x\right) + \cos\left(\sqrt{2/\gamma} \cdot x\right),$ $\bigstar \omega_{\text{NTK}}(x;\gamma) := \sqrt{\gamma} \cdot \sin\left(\sqrt{2/\gamma} \cdot x + \pi/4\right) = \sqrt{\gamma/2}\left(\sin\left(\sqrt{2/\gamma} \cdot x\right) + \cos\left(\sqrt{2/\gamma} \cdot x\right)\right).$		
Ineorem (Buchnoiz): Le space H^s , $s \in (d/2, 3d/2)$ assump., w.h.b. the min-r	$[1]$ Then under label noise norm interpol. \hat{g}_D in the	equivalent to Sobolev e and mild distrib. RKHS is inconsistent .	Bonus: Disentangle sign from spike component	a. a. $ \begin{array}{c} $	b. 0.5 0.0 -0.5 -1.0 π $-\pi$ -
$s > \frac{d}{2}$ (O) Overfit	The RKHS fulfills: tting: Exists $c_{fit} \in (0,1]$:		$\sigma_{spsm}(x) = ReLU(x) + \omega_{\rm NTK}(x)$	Angle (radians) $f_{x} \rightarrow f_{spsm}(\mathbf{x}; \theta) = f_{Re}$	Angle (radians) $LU(\mathbf{x}; \theta) + \left(f_{\omega_{\text{NTK}}}(\mathbf{x}; \theta) - b_L \right)$

Trainerror(f_D) $\leq (1 - c_{fit}) \sigma^2$ for all training sets D. (N) norm-bounded: Exists C > 0: $\|\hat{f}_D\|_{H^s} \le C \|\hat{g}_D\|_{H^s}$

Activation function

Neural network decomposition

References.

- P. Bartlett, A. Montanari, A. Rakhlin. Deep learning: a statistical viewpoint. Acta Numerica 2021.
- A. Bietti, F. Bach. Deep Equals Shallow for ReLU Networks in Kernel Regimes. ICLR 2021.
- S. Buchholz. Kernel Interpolation in Sobolev Spaces is Not Consistent in Low Dimensions. COLT 2022.
- L. Chen, S. Xu. Deep Neural Tangent Kernel and Laplace Kernel Have the Same RKHS. ICLR 2021.
- A. Rakhlin, X. Zhai. Consistency of Interpolation with Laplace Kernels is a High-dimensional Phenomenon. COLT 2019.
- J. Simon, S. Anand, M. DeWeese. Reverse Engineering the Neural Tangent Kernel. ICML 2022.

Acknowledgements. Funded by Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany's Excellence Strategy - EXC 2075 - Project 390740016 and EXC 2064/1 - Project 390727645.

Conclusion

- Harmful overfitting is a generic phenomenon in fixed dimension,
- But can be fixed with spiky-smooth estimators and activation functions

Future work: How can we design activation functions for complex architectures and datasets?

