STATISTICAL ANALYSIS OF WASSERSTEIN GANS [1] Moritz Haas¹, Stefan Richter²

¹Ulrike von Luxburg, Theory of Machine Learning, Universität Tübingen. ²Universität Heidelberg

Unconditional Problem

Goal: Learn to sample from unknown \mathbb{P}^Y .

Given $Y_i \sim \mathbb{P}^Y$, $i = 1, \ldots, n$ strictly stationary with values in $[0, 1]^d$.

Sample i.i.d. latent noise $Z \in [0, 1]^{d_Z}$ (\mathbb{P}^Z known) independent of

```
Y_1,\ldots,Y_n.
```

Assumptions

- Network class $\mathcal{R}(L, \mathbf{p}, s)$: bounded, sparse ReLU networks of depth L, width vector **p** and number of non-zero weight entries *s* (cf. [3]).
- Class of generator functions \mathcal{G} : Compositions of *t*-sparse, β -Hölder smooth functions (cf. [3]). Assume

 $\exists g^* \in \mathcal{G} : \mathbb{P}^{X,g^*(Z,X)} = \mathbb{P}^{X,Y}.$

Is $W_{1,n}$ a meaningful distance measure?

If the critic networks grow fast enough, $W_{1,n}$ and W_1 are equivalent.

Lemma 2 (Characterization of weak convergence): If L_f , \mathbf{p}_f , s_f satisfy assumptions (a)-(c) with $\phi_n = n^{-\frac{1}{2\gamma+d+d_X}}$ for some $\gamma \ge 1$. Then, for $n \to \infty$, $W_1(\mathbb{P}^{X_n}, \mathbb{P}^X) \to 0 \iff W_{1,n}(\mathbb{P}^{X_n}, \mathbb{P}^X) \to 0.$

Find a generator function $g: [0,1]^{d_Z} \rightarrow [0,1]^d$ such that $\mathbb{P}^{g(Z)} = \mathbb{P}^Y.$

Conditional Problem

Goal: Learn to sample from unknown $\mathbb{P}^{Y|X=x}$ given conditional information X = x. Given $(X_i, Y_i) \sim \mathbb{P}^{(X,Y)}, i = 1, \ldots, n$ strictly stationary with values in $[0, 1]^{d_X+d}$. Sample i.i.d. latent noise $Z \in [0, 1]^{d_Z}$ (\mathbb{P}^Z known) independent of $Y_1, \ldots, Y_n, X_1, \ldots, X_n$. **Find** a generator function $g: [0,1]^{d_Z+d_X} \rightarrow [0,1]^d$ such that $\mathbb{P}^{X, g(Z, X)} = \mathbb{P}^{X, Y}.$

$\rightsquigarrow \mathbb{P}^{g(Z,x)} = \mathbb{P}^{g(Z,X)|X=x} = \mathbb{P}^{Y|X=x}$ useful for uncertainty quantification in prediction.

Structure of true generator function:

Network Growth Assumptions: With the rate

 $\phi_{n\mathcal{E}} := (n\mathcal{E})^{-\frac{2\beta}{2\beta+t}},$

where $\mathcal{E} \propto$ number of epochs (if you can sample from \mathbb{P}^X),

(a) $L_q \simeq \log(n\mathcal{E})$, (b) $\min_{i=1,\dots,L_q} p_{g,i} \asymp (n\mathcal{E}) \cdot \phi_{n\mathcal{E}}$, (C) $s_q \asymp (n\mathcal{E}) \cdot \phi_{n\mathcal{E}} \log(n\mathcal{E})$, (d) $(L_f \leq L_q, s_f \leq s_q)$ or $(L_q \leq L_f, s_q \leq s_f)$.

Lemma (estimated distribution converges): Under the assumptions above, if $\mathbb{E}W_{1,n}(\tilde{g}_n) \to 0$, then $(X, \tilde{g}_n(Z, X)) \xrightarrow{d} (X, Y).$

→ optimal growth rate of critic networks: To recover the convergence rate $\phi_{n\mathcal{E}}^{1/2}$, choose $\gamma = \frac{\beta d}{t}$.

Applications to prediction

Get uncertainty estimates from $\mathbb{P}^{\hat{g}_n(Z,x)} \approx \mathbb{P}^{Y|X=x}$: Learn conditional distribution of temperatures in 32 German cities given temperatures on previous day.

Network-based Wasserstein Objective

Dual formulation [2] of W_1 -distance with critic functions f:

 $W_1(\mathbb{P}_1, \mathbb{P}_2) = \sup_{f \cdot \mathbb{R}^{d+d_Y \to \mathbb{R}} ||f||_I < 1} \int_{\mathcal{X}} f \, \mathrm{d}\mathbb{P}_1 - \int_{\mathcal{X}} f \, \mathrm{d}\mathbb{P}_2.$

So find *g* minimizing $W_1(q) := W_1(\mathbb{P}^{(X,Y)}, \mathbb{P}^{(g(Z,Y),Y)})$ $= \sup \mathbb{E}f(X,Y) - \mathbb{E}f(g(Z,Y),Y).$ $f: \mathbb{R}^{d+d_Y} \to \mathbb{R}, ||f||_L \leq 1$

 W_1 not available in practice \rightsquigarrow Approximation with critic networks f:

Modified network-based Wasserstein Distance

 $W_{1,n}(g) := \sup_{f \in \mathcal{R}_D, \|f\|_L \le 1} \left\{ \mathbb{E}f(X,Y) - \mathbb{E}f(X,g(Z,X)) \right\}.$

• For empirical version replace \mathbb{E} by $\frac{1}{n} \sum_{i=1}^{n}$.

Convergence Rates

Main Theorem (Excess Risk Bound):

Suppose assumptions (a)-(d) hold and (X, Y) β -mixing of order $O(k^{-\alpha})$ with $\alpha > 1$, then for the empirical risk minimizer \hat{g}_n , $\mathbb{E}W_{1,n}(\hat{g}_n) \lesssim \left(\frac{s_f L_f \log(s_f L_f)}{n}\right)^{1/2} + \sqrt{d} \,\phi_{n\mathcal{E}}^{1/2} \log(n\mathcal{E})^{3/2}.$

Furthermore, with probability $\geq 1 - 3n^{-1} - (\frac{\log(n)}{n})^{\frac{\alpha-1}{2}}$, $W_{1,n}(\hat{g}_n) \lesssim \left(\frac{s_f L_f \log(s_f L_f)}{n}\right)^{1/2} + \sqrt{d} \,\phi_{n\mathcal{E}}^{1/2} \log(n\mathcal{E})^{3/2}$ $+\left(\frac{\log(n)}{n}\right)^{1/2},$

where \leq dep. on characteristics of (X_1, Y_1) , α and hyperparameters of \mathcal{G} but not on d.

 $\sim \rightarrow$

• approx. rate $\frac{1}{\sqrt{n}}$ for Hölder smoothness $\beta \to \infty$,

• remove influence of d and complexity of $\mathbb{P}^{X,Y}$ by training long enough!

Conclusions

- formalize Wasserstein GANs theoretically (with growing network architectures unlike [4]),
- $W_{1,n}$ characterizes weak convergence,
- first convergence rates for (conditional) WGANs, \rightsquigarrow recommendations on network sizes,
- allow dependence (β and ϕ -mixing),
- construct asymptotic confidence intervals for high-dim. prediction,
- → simulation studies show good empirical coverage,
- explains good performance under long training for large and complex generators and/or large dimension d.

References

[1] Moritz Haas and Stefan Richter. Statistical analysis of wasserstein gans with applications to time series forecasting, 2020. [2] C. Villani. Optimal transport – Old and new, volume 338, pages 43–113. 01 2008. doi: 10.1007/978-3-540-71050-9. [3] J. Schmidt-Hieber. Nonparametric regression using deep neural networks with relu activation function, 2017. [4] Gérard Biau, Maxime Sangnier, and Ugo Tanielian. Some theoretical insights into wasserstein gans, 2020.

