Unconditional Problem

Goal: Learn to sample from unknown P .

Given Y, ~ P¥ i =1,..., n strictly stationary with
values in [0, 1]%.
Sample i.i.d. latent noise Z < [0, 1]% (P? known)
independent of

Y, ... Y,
Find a generator function ¢ : [0, 1] — [0, 1] such
that

p9iZ) = pY.

Conditional Problem

Goal: Learn to sample from unknown PY'*= given
conditional information X = z.

Given (X, V) ~ PXY) 4 =1, ... n strictly
stationary with values in [0, 1]%x*.

Sample i.i.d. latent noise Z < [0, 1]% (P? known)
independentof vy,....Y,, X,,..., X,.

Find a generator function g : [0, 1]% ™ — [0, 1]¢ such
that

IP)X,g(Z,X) _ IP)X’Y.
s P9Z3) — py(Z2,X)|X=2 _ pY|X=1

useful for uncertainty quantification in
prediction.

Network-based Wasserstein
Objective

Dual formulation [2] of W;-distance with critic func-
tions f:

Wl(Pl,IPQ) = SUp /fdpl —/ fdPQ
FRITY SR || fll <1/ & X

So find g minimizing
Wig) = Wy(PXY) pl@Y)y)
=  sup  Ef(X,)Y)-Ef(g(Z,Y),Y).
fREY SR, || f][,<1

W, not available in practice ~» Approximation with
critic networks f:

* Modified network-based Wasserstein Distance

Wing) =  sup  {Ef(X,Y)—Ef(X,g(Z X))}
fERD,| fll<1

» For empirical version replace E by - "7 ..
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Assumptions

* Network class R(L, p, s): bounded, sparse RelL U
networks of depth L, width vector p and number of
non-zero weight entries s (cf. [3]).

» Class of generator functions G: Compositions of
t-sparse, $-Holder smooth functions (cf. [3]).

Assume
dg" € G pXg(ZX) — pXY

Structure of true generator function:

Network Growth Assumptions: With the rate
2p

One = (n(C/’)—m’
where £ o« number of epochs (if you can sample
from P3),

)
(b) min;—y,_ 1, pgi < (n€) - Pne,
(C) sy < (NE) - Pnelog(nf),
(d) S s7).

Y

Convergence Rates

Main Theorem (Excess Risk Bound):
Suppose assumptions (a)-(d) hold and (X, Y)
B-mixing of order O(k~%) with o > 1, then for the
empirical risk minimizer g,,

Ll L)\ 12
W0 (3n) S (2 Of(sf / )) +Vd o log(n€)P2,

Furthermore, with probability > 1 — 3n~! — (‘&) 3,

n

Ll L\1/2
Wia(g) S (BN G612 og(me )

T
 (log(n)\1/2
()
where < dep. on characteristics of (X3, Y7), a and
hyperparameters of G but not on d.

~

- approx. rate %ﬁ for Holder smoothness 3 — oo,

remove influence of d and complexity of P**
by training long enough!

Is 17/ ,, a meaningful distance
measure?

If the critic networks grow fast enough, W, ,, and
IV, are equivalent.

Lemma 2 (Characterization of weak convergence):

If L;, ps, sy satisty assumptions (a)-(c) with

o, =n 2ix for some v > 1. Then, for n — oo,
Wi(P5 PY) 0 = Wy, (PY PY) = 0.

Lemma (estimated distribution converges):

Under the assumptions above, if EW; ,,(g,) — 0,
then
(X, Gu(Z, X)) = (X, Y).

~ optimal growth rate of critic networks: To
1/2

recover the convergence rate ¢,/:, choose y = 2.

Applications to prediction

Get uncertainty estimates from P%(%:%) ~ PYIX=2;
Learn conditional distribution of temperatures in
32 German cities given temperatures on previous
day.
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Conclusions

e formalize Wasserstein GANs theoretically (with
growing network architectures unlike [4]),

¢ |V, , characterizes weak convergence,

e first convergence rates for (conditional) WGANS,
~ recommendations on network sizes,

¢ allow dependence (- and ¢-mixing),

e construct asymptotic confidence intervals for
high-dim. prediction,
~» simulation studies show good empirical
coverage,

e explains good performance under long training
for large and complex generators and/or large
dimension d.
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