STATISTICAL ANALYSIS OF WASSERSTEIN GANS [1] Moritz Haas¹, Stefan Richter²

¹ Ulrike von Luxburg, Theory of Machine Learning, Universität Tübingen. ²Universität Heidelberg

Sample i.i.d. latent noise $Z \in [0, 1]^{d_Z}$ (\mathbb{P}^Z known) independent of

 Y_1, \ldots, Y_n .

Unconditional Problem

Goal: Learn to sample from unknown \mathbb{P}^Y .

Given $Y_i \sim \mathbb{P}^Y, i = 1, \ldots, n$ strictly stationary with values in $[0,1]^d.$

$\rightsquigarrow \quad \mathbb{P}^{g(Z,x)} = \mathbb{P}^{g(Z,X)|X=x} = \mathbb{P}^{Y|X=x}.$ useful for uncertainty quantification in prediction.

Dual formulation [2] of W_1 -distance with critic functions f:

 $W_1(\mathbb{P}_1, \mathbb{P}_2) = \text{sup}$ $f:\mathbb{R}^{d+d}Y \rightarrow \mathbb{R}, ||f||_L \leq 1$ \mathbb{Z} \mathcal{X} f d \mathbb{P}_1 – \mathbb{Z} \mathcal{X} f d \mathbb{P}_2 .

So find g minimizing $W_1(g) := W_1(\mathbb{P}^{(X,Y)}, \mathbb{P}^{(g(Z,Y),Y)})$ $=$ sup $\mathbb{E} f(X,Y) - \mathbb{E} f(g(Z,Y),Y).$ $f:\mathbb{R}^{d+d}Y \rightarrow \mathbb{R}, ||f||_L \leq 1$

Conditional Problem

Goal: Learn to sample from unknown $\mathbb{P}^{Y|X=x}$ given conditional information $X = x$. Given $(X_i, Y_i) \sim \mathbb{P}^{(X,Y)}, i = 1, \ldots, n$ strictly stationary with values in $[0, 1]^{d_X+d}$. **Sample** i.i.d. latent noise $Z \in [0, 1]^{d_Z}$ (\mathbb{P}^Z known) independent of $Y_1, \ldots, Y_n, X_1, \ldots, X_n$. **Find** a generator function $g:[0,1]^{d_Z+d_X}\rightarrow [0,1]^d$ such that $\mathbb{P}^{X,\,g(Z,X)} = \mathbb{P}^{X,Y}.$

 W_1 not available in practice \leadsto Approximation with critic networks f:

- Network class $\mathcal{R}(L, \mathbf{p}, s)$: bounded, sparse ReLU networks of depth L , width vector p and number of non-zero weight entries s (cf. [3]).
- Class of generator functions G : Compositions of t-sparse, β -Hölder smooth functions (cf. [3]). Assume

 $\exists g^* \in \mathcal{G}: \quad \mathbb{P}^{X,g^*(Z,X)} = \mathbb{P}^{X,Y}.$

Network-based Wasserstein Objective

Suppose assumptions (a)-(d) hold and (X, Y) β -mixing of order $O(k^{-\alpha})$ with $\alpha > 1$, then for the empirical risk minimizer \hat{g}_n , $\mathbb{E} W_{1,n}(\hat{g}_{n}) \lesssim$ $\int s_f L_f \log(s_f L_f)$ \overline{n} $\bigwedge^{1/2}$ $+$ √ $d\,\phi$ 1/2 $\frac{1/2}{n\mathcal{E}}\log(n\mathcal{E})^{3/2}.$ Furthermore, with probability $\geq 1 - 3n^{-1} - (\frac{\log(n)}{n})$ \overline{n} $\frac{\alpha-1}{2}$ $\frac{-1}{2}$, $W_{1,n}(\hat{g}_n) \lesssim$ $\int s_f L_f \log(s_f L_f)$ \overline{n} $\bigwedge^{1/2}$ $+$ √ $d\,\phi$ 1/2 $\frac{1/2}{n\mathcal{E}}\log(n\mathcal{E})^{3/2}$ $+$ $\log(n)$ \overline{n} $\bigwedge^{1/2}$,

where \lesssim dep. on characteristics of (X_1, Y_1) , α and hyperparameters of G but not on d .

 \rightsquigarrow

 \cdot remove influence of d and complexity of $\mathbb{P}^{X,Y}$ **by training long enough!**

Is $W_{1,n}$ a meaningful distance **measure?**

If the critic networks grow fast enough, $W_{1,n}$ and W¹ **are equivalent**.

Lemma 2 (Characterization of weak convergence): If L_f, \mathbf{p}_f, s_f satisfy assumptions (a)-(c) with $\phi_n=n$ $\overline{}^{-\frac{2\gamma}{2\gamma+d+d_X}}$ for some $\gamma\geq 1$. Then, for $n\to\infty$, $\tilde{2}\gamma$ $W_1(\mathbb{P}^{X_n}, \mathbb{P}^{X}) \to 0 \iff W_{1,n}(\mathbb{P}^{X_n}, \mathbb{P}^{X}) \to 0.$

Find a generator function $g : [0, 1]^{dz} \rightarrow [0, 1]^{d}$ such that $\mathbb{P}^{g(Z)} = \mathbb{P}^{Y}.$

• Modified network-based Wasserstein Distance

 $W_{1,n}(g) := \sup$ $f \in \mathcal{R}_D, ||f||_L \leq 1$ $\{\mathbb{E}f(X,Y)-\mathbb{E}f(X,g(Z,X))\}.$

• For empirical version replace $\mathbb E$ by $\frac{1}{n}$ $\sum_{i=1}^n$.

Assumptions

Get uncertainty estimates from $\mathbb{P}^{\hat{g}_n(Z,x)} \approx \mathbb{P}^{Y|X=x}$: Learn **conditional distribution** of temperatures in 32 German cities given temperatures on previous day.

- formalize Wasserstein GANs theoretically (with growing network architectures unlike [4]),
- \bullet $W_{1,n}$ characterizes weak convergence,
- first convergence rates for (conditional) WGANs, \rightsquigarrow recommendations on network sizes,
- allow dependence (β and ϕ -mixing),
- construct asymptotic confidence intervals for high-dim. prediction,
- \rightsquigarrow simulation studies show good empirical coverage,
- explains good performance under long training for large and complex generators and/or large dimension d .

Structure of true generator function:

Network Growth Assumptions: With the rate

 $\phi_n \varepsilon \mathrel{\mathop:}= (n \mathcal{E})^{-\frac{2\beta}{2\beta + 1}}$ $\frac{1}{2\beta+t}$,

where $\mathcal{E} \propto$ number of epochs (if you can sample from \mathbb{P}^X),

(a) $L_q \approx \log(n\mathcal{E}),$ (b) $\min_{i=1,\dots,L_g} p_{g,i} \asymp (n\mathcal{E}) \cdot \phi_{n\mathcal{E}}$, (c) $s_q \asymp (n\mathcal{E}) \cdot \phi_{n\mathcal{E}} \log(n\mathcal{E}),$ (d) $(L_f \lesssim L_q, s_f \lesssim s_q)$ or $(L_q \lesssim L_f, s_q \lesssim s_f)$.

Convergence Rates

Main Theorem (Excess Risk Bound):

• **approx. rate** [√] 1 \overline{n} **for Hölder smoothness** β → ∞,

Lemma (estimated distribution converges): Under the assumptions above, if $\mathbb{E}W_{1,n}(\tilde{g}_n) \to 0$, then

 $(X,\,\widetilde{g}_n(Z,X))$ \overline{d} $\stackrel{a}{\longrightarrow} (X, Y).$

 \rightsquigarrow optimal growth rate of critic networks: To recover the convergence rate ϕ 1/2 $\frac{1/2}{n\mathcal{E}}$, choose $\gamma=\frac{\beta d}{t}$ $\frac{d}{t}$.

Applications to prediction

Conclusions

References

[1] Moritz Haas and Stefan Richter. Statistical analysis of wasserstein gans with applications to time series forecasting, 2020. [2] C. Villani. *Optimal transport – Old and new*, volume 338, pages 43–113. 01 2008. doi: 10.1007/978-3-540-71050-9. [3] J. Schmidt-Hieber. Nonparametric regression using deep neural networks with relu activation function, 2017. [4] Gérard Biau, Maxime Sangnier, and Ugo Tanielian. Some theoretical insights into wasserstein gans, 2020.

