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Unconditional Problem

Goal: Learn to sample from unknown PY .

Given Yi ∼ PY , i = 1, . . . , n strictly stationary with
values in [0, 1]d.
Sample i.i.d. latent noise Z ∈ [0, 1]dZ (PZ known)
independent of
Y1, . . . , Yn.
Find a generator function g : [0, 1]dZ → [0, 1]d such
that

Pg(Z) = PY .

Conditional Problem

Goal: Learn to sample from unknown PY |X=x given
conditional information X = x.

Given (Xi, Yi) ∼ P(X,Y ), i = 1, . . . , n strictly
stationary with values in [0, 1]dX+d.
Sample i.i.d. latent noise Z ∈ [0, 1]dZ (PZ known)
independent of Y1, . . . , Yn, X1, . . . , Xn.
Find a generator function g : [0, 1]dZ+dX → [0, 1]d such
that

PX, g(Z,X) = PX,Y .

 Pg(Z,x) = Pg(Z,X)|X=x = PY |X=x.
useful for uncertainty quantification in
prediction.

Network-based Wasserstein
Objective

Dual formulation [2] of W1-distance with critic func-
tions f:

W1(P1,P2) = sup
f :Rd+dY→R, ||f ||L≤1

∫
X
f dP1 −

∫
X
f dP2.

So find g minimizing
W1(g) := W1(P(X,Y ),P(g(Z,Y ),Y ))

= sup
f :Rd+dY→R, ||f ||L≤1

Ef (X, Y )− Ef (g(Z, Y ), Y ).

W1 not available in practice  Approximation with
critic networks f:
• Modified network-based Wasserstein Distance

W1,n(g) := sup
f∈RD,‖f‖L≤1

{
Ef (X, Y )−Ef (X, g(Z,X))

}
.

• For empirical version replace E by 1
n

∑n
i=1.

Assumptions

• Network class R(L,p, s): bounded, sparse ReLU
networks of depth L, width vector p and number of
non-zero weight entries s (cf. [3]).

• Class of generator functions G: Compositions of
t-sparse, β-Hölder smooth functions (cf. [3]).

Assume

∃g∗ ∈ G : PX,g∗(Z,X) = PX,Y .

Structure of true generator function:

Network Growth Assumptions: With the rate

φnE := (nE)−
2β

2β+t,

where E ∝ number of epochs (if you can sample
from PX),

(a)Lg � log(nE),
(b)mini=1,...,Lg pg,i � (nE) · φnE,
(c) sg � (nE) · φnE log(nE),
(d) (Lf . Lg, sf . sg) or (Lg . Lf , sg . sf).

Convergence Rates

Main Theorem (Excess Risk Bound):
Suppose assumptions (a)-(d) hold and (X, Y )
β-mixing of order O(k−α) with α > 1, then for the
empirical risk minimizer ĝn,

EW1,n(ĝn) .
(sfLf log(sfLf)

n

)1/2
+
√
d φ

1/2
nE log(nE)

3/2.

Furthermore, with probability ≥ 1− 3n−1 − (log(n)n )
α−1
2 ,

W1,n(ĝn) .
(sfLf log(sfLf)

n

)1/2
+
√
d φ

1/2
nE log(nE)

3/2

+
(log(n)

n

)1/2
,

where . dep. on characteristics of (X1, Y1), α and
hyperparameters of G but not on d.

 

• approx. rate 1√
n

for Hölder smoothness β →∞,

• remove influence of d and complexity of PX,Y
by training long enough!

Is W1,n a meaningful distance
measure?

If the critic networks grow fast enough, W1,n and
W1 are equivalent.

Lemma 2 (Characterization of weak convergence):
If Lf ,pf , sf satisfy assumptions (a)-(c) with
φn = n

− 2γ
2γ+d+dX for some γ ≥ 1. Then, for n→∞,

W1(PXn,PX)→ 0 ⇐⇒ W1,n(PXn,PX)→ 0.

Lemma (estimated distribution converges):
Under the assumptions above, if EW1,n(g̃n)→ 0,
then

(X, g̃n(Z,X))
d−→ (X, Y ).

 optimal growth rate of critic networks: To
recover the convergence rate φ1/2nE , choose γ = βd

t .

Applications to prediction

Get uncertainty estimates from Pĝn(Z,x) ≈ PY |X=x:
Learn conditional distribution of temperatures in
32 German cities given temperatures on previous
day.

Conclusions

• formalize Wasserstein GANs theoretically (with
growing network architectures unlike [4]),
•W1,n characterizes weak convergence,
• first convergence rates for (conditional) WGANs,
 recommendations on network sizes,

• allow dependence (β- and φ-mixing),
• construct asymptotic confidence intervals for

high-dim. prediction,
 simulation studies show good empirical

coverage,
• explains good performance under long training

for large and complex generators and/or large
dimension d.
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